Поддержать команду Зеркала
Беларусы на войне
  1. Стало известно, почему бизнесмен Александр Мошенский, попавший под санкции Польши, покинул свою «почетную» должность
  2. История, подобная случившемуся с матерью Екатерины Водоносовой, может коснуться многих. Как действовать в такой ситуации — советует юрист
  3. «Перестало хватать ресурса». Беларусы заметили резкое ухудшение мобильной связи — им ответили в министерстве
  4. «Серый кардинал» демсил из, пожалуй, самой известной политической династии Беларуси. Вспоминаем историю Франака Вячорки
  5. Чиновники продолжают «отжимать» недвижимость у уехавших за границу — очередной пример
  6. Чиновники придумали, как бороться с «тунеядцами» — наказывают их рублем (и это не коммуналка по повышенным тарифам)
  7. На крупных заводах тысячи вакансий. Какие зарплаты предлагают
  8. Если власти освободят Марию Колесникову, не поступит ли она так же, как Николай Статкевич? Спросили об этом ее сестру
  9. Внезапно умер один из начальников брестской милиции, который снимался в пропагандистском фильме о протестах 2010 года
  10. «Дело лифтера». В Могилеве задержан серийный убийца девочек и женщин, который скрывался больше 20 лет
  11. Экс-звезда хоккейного минского «Динамо» арестован в Финляндии по подозрению в тяжком наркопреступлении
  12. Преуменьшил угрозу, преувеличил успехи, косвенно угрожал: эксперты проанализировали выступление Путина на заседании клуба «Валдай»


/

Физики превратили фотоны света в уникальное квантовое состояние материи — сверхтекучее твердое тело, которое одновременно обладает свойствами твердого кристалла и жидкости без вязкости, рассказывает «Хайтек».

Изображение носит иллюстративный характер. Фото: pixabay.com
Изображение носит иллюстративный характер. Фото: pixabay.com

Исследователи из Национального исследовательского совета Италии (CNR) в эксперименте превратили фотоны света в сверхтекучее твердое тело. До сих пор это квантовое состояние материи демонстрировали только в экспериментах с атомами при экстремально низких температурах.

Квантовое состояние — это описание того, что происходит с частицей на самом маленьком уровне. В отличие от обычных объектов, в квантовом мире частица может находиться в нескольких состояниях одновременно (например, и жидком, и твердом) и только в момент измерения «выбирает» одно конкретное состояние.

«Мы фактически превратили свет в твердое тело. Это довольно круто», — сообщил руководитель исследования Димитриос Трипогеоргос.

Вместо традиционного подхода с использованием ультрахолодных атомов ученые использовали полупроводник из арсенида галлия-алюминия. Они направили лазерный луч на участок полупроводника со специально созданным рисунком из узких выступов.

Ультрахолодные атомы — атомы, охлажденные до температуры, близкой к абсолютному нулю (-273,15°C). При таких температурах они почти не двигаются и начинают вести себя по законам квантовой механики, например, могут образовывать особые состояния материи.

В результате сложного взаимодействия света и материала образовались гибридные частицы — поляритоны. Особая конфигурация выступов на рисунке ограничивала движение и энергетические уровни этих квазичастиц таким образом, что они объединились в сверхтвердое состояние.

Квазичастица — это не настоящая частица, а удобная модель для описания сложных процессов в физике. Она ведет себя как частица, но на самом деле представляет коллективное движение множества частиц. Например, в твердых телах электроны могут двигаться так, что создается эффект, будто есть «новая» частица — квазичастица, которая описывает их поведение.

Соавторка исследования Даниэлла Санвитто более десяти лет назад предсказала, что свет может вести себя как жидкость. Исследовательница подчеркнула сложность доказательства свойств полученного материала: «Команде пришлось провести чрезвычайно точные измерения множества характеристик, чтобы подтвердить, что созданное вещество действительно является и твердым телом, и жидкостью без вязкости».

Исследователи считают, что сверхтвердыми телами на основе света может быть проще манипулировать, чем аналогами на основе атомов. Это открывает новые возможности для изучения экзотических состояний материи и их потенциального применения в квантовых технологиях.

Результаты эксперимента описаны в статье в журнале Nature.