Поддержать команду Зеркала
Беларусы на войне
  1. Если власти освободят Марию Колесникову, не поступит ли она так же, как Николай Статкевич? Спросили об этом ее сестру
  2. Внезапно умер один из начальников брестской милиции, который снимался в пропагандистском фильме о протестах 2010 года
  3. «Дело лифтера». В Могилеве задержан серийный убийца девочек и женщин, который скрывался больше 20 лет
  4. Экс-звезда хоккейного минского «Динамо» арестован в Финляндии по подозрению в тяжком наркопреступлении
  5. На крупных заводах тысячи вакансий. Какие зарплаты предлагают
  6. История, подобная случившемуся с матерью Екатерины Водоносовой, может коснуться многих. Как действовать в такой ситуации — советует юрист
  7. Чиновники продолжают «отжимать» недвижимость у уехавших за границу — очередной пример
  8. Стало известно, почему бизнесмен Александр Мошенский, попавший под санкции Польши, покинул свою «почетную» должность
  9. «Перестало хватать ресурса». Беларусы заметили резкое ухудшение мобильной связи — им ответили в министерстве
  10. «Серый кардинал» демсил из, пожалуй, самой известной политической династии Беларуси. Вспоминаем историю Франака Вячорки
  11. Беларус ехал в Литву с итальянской визой, но его развернули на границе. Рассказываем, в чем причина и как не попасть в такую ситуацию
  12. Чиновники придумали, как бороться с «тунеядцами» — наказывают их рублем (и это не коммуналка по повышенным тарифам)
  13. Преуменьшил угрозу, преувеличил успехи, косвенно угрожал: эксперты проанализировали выступление Путина на заседании клуба «Валдай»
  14. Помните, замглавы Администрации Лукашенко посетила женскую колонию? Узнали, как заключенных заставили готовиться к ее приезду


/

Резкий крен, падение в воздушную яму и тревожный сигнал ремней безопасности — знакомые ощущения для любого, кто часто летает. Для миллионов пассажиров турбулентность остается главным источником дискомфорта и страха в полете. Но авторы нового исследования обещают перевести ее из разряда непредсказуемых явлений в область точной науки. Они заявили о создании, возможно, самой передовой математической модели турбулентности, которая поможет сделать полет гораздо спокойнее, пишет Naked Science.

Изображение носит иллюстративный характер. Фото: pixabay.com
Изображение носит иллюстративный характер. Фото: pixabay.com

Турбулентность — хаотическое, иногда упорядоченное колебание скорости среды (потока) по направлению и величине. Это явление наблюдают в движущемся газе и жидкости — в воздухе и в воде. С появлением авиации пилоты неизбежно сталкивались с турбулентностью и учились обходить грозы и горные районы, где восходящие и нисходящие потоки — обычное дело.

Однако самый коварный вид турбулентности — турбулентность ясного неба. Она возникает внезапно, в небе без облаков или штормов, и ее практически невозможно обнаружить стандартными бортовыми радарами.

В последнее время опасность турбулентности растет. В 2023 году группа британских ученых проанализировала метеорологические данные, собранные за несколько десятилетий. Их вывод шокировал: за период с 1979 по 2020 год интенсивность сильной турбулентности ясного неба над Северной Атлантикой выросла на 55 процентов. Это тревожная тенденция для одного из самых загруженных авиационных маршрутов в мире.

Проблема выходит за рамки простого неудобства. Хотя авиакатастрофы из-за турбулентности крайне редки, травмы пассажиров и членов экипажа — печальная реальность. Совсем недавно, в конце июля 2025 года, рейс авиакомпании Delta Air Lines над штатом Вайоминг в США попал в зону неожиданно сильной турбулентности. Самолет резко тряхнуло, несколько человек получили травмы.

Ученые признали, что фундаментальное понимание турбулентности до сих пор остается относительно слабым. Причина сложности кроется в самой природе явления. Турбулентность зачастую рождается из хаоса и зависит от скорости в разных частях потока, то есть факторов, которые быстро меняются во времени и пространстве. Из-за этого поведение воздушных масс в турбулентном потоке трудно предсказать. Локальные вихри и разнонаправленные движения делают поток чрезвычайно сложным для точного моделирования.

Новый шаг к разгадке этой вековой тайны сделали Бьёрн Бирнир, руководитель Центра комплексных и нелинейных наук Университета Калифорнии в Санта-Барбаре, и Луиза Ангелута-Бауэр, физик-теоретик из Университета Осло. Их работа, опубликованная в авторитетном журнале Physical Review Research, предлагает модель, которая объединяет два принципиально разных подхода к изучению турбулентности.

Изображение носит иллюстративный характер. Фото: KENAN SÖĞÜT, pexels.com
Изображение носит иллюстративный характер. Фото: KENAN SÖĞÜT, pexels.com

Традиционно турбулентность изучают двумя способами.

Первый — Лагранжевый подход. В этом случае исследователь следит за отдельным элементом потока. Это похоже на наблюдение за одиноким листом, который несет течением реки. Лист кружится в водоворотах, подпрыгивает на волнах, его путь причудлив и непредсказуем.

Второй способ — Эйлеровский подход. Ученый фокусируется не на движущемся объекте, а на фиксированной точке в пространстве. Представьте себе камень, торчащий из воды. Исследователь смотрит, как вода и ее вихри обтекают этот неподвижный камень. Он видит изменение скорости и направления потока в одной точке, но не следит за отдельной каплей.

Каждый подход хорош по-своему, но ни один не дает полной картины. Лагранжева механика требует сложного моделирования траекторий частиц в потоке. Подход Эйлера проще, но он статичен и не показывает общую динамику потока.

Бирнир и Ангелута-Бауэр создали гибридную модель, которая сочетает оба подхода. Они использовали теоретические выкладки и статистический анализ, чтобы построить мост между двумя методами.

— Турбулентность — это состояние, где все сходит с ума. Вихри ведут себя очень хаотично, существует множество степеней свободы. Новая модель — ключ к тому, чтобы понять этот безумный танец стихии, — пояснил Дж. Дойн Фармер, профессор Оксфордского университета, специализирующийся на хаотических системах.

Как именно гибридная модель улучшит полеты? По мнению авторов новой работы, их подход к турбулентности позволит метеорологам создавать гораздо более детальные и точные прогнозы. В перспективе пилоты будут получать не общую карту зон возможной тряски, а конкретные данные о силе, расположении и характере турбулентных потоков на маршруте. Чем лучше модель, чем больше деталей турбулентного течения она учитывает, тем точнее будет прогноз, который получит пилот. А точный прогноз — основа для принятия верных решений в кабине экипажа.

Однако новая модель сама по себе вряд ли попадет в руки пилотов: она сложна и требует навыков в вычислительной гидродинамике. Это не делает открытие бесполезным. Ученые рассчитывают, что на его основе будут созданы прикладные инструменты: улучшенные метеопрогнозы, алгоритмы для бортовых систем и конструктивные решения, делающие самолеты более устойчивыми к хаотичным потокам воздуха.